Microstructured optical fibers as high-pressure microfluidic reactors.

نویسندگان

  • Pier J A Sazio
  • Adrian Amezcua-Correa
  • Chris E Finlayson
  • John R Hayes
  • Thomas J Scheidemantel
  • Neil F Baril
  • Bryan R Jackson
  • Dong-Jin Won
  • Feng Zhang
  • Elena R Margine
  • Venkatraman Gopalan
  • Vincent H Crespi
  • John V Badding
چکیده

Deposition of semiconductors and metals from chemical precursors onto planar substrates is a well-developed science and technology for microelectronics. Optical fibers are an established platform for both communications technology and fundamental research in photonics. Here, we describe a hybrid technology that integrates key aspects of both engineering disciplines, demonstrating the fabrication of tubes, solid nanowires, coaxial heterojunctions, and longitudinally patterned structures composed of metals, single-crystal semiconductors, and polycrystalline elemental or compound semiconductors within microstructured silica optical fibers. Because the optical fibers are constructed and the functional materials are chemically deposited in distinct and independent steps, the full design flexibilities of both platforms can now be exploited simultaneously for fiber-integrated optoelectronic materials and devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing.

We present thermally regenerated fiber Bragg gratings in air-hole microstructured fibers for high-temperature, hydrostatic pressure measurements. High-temperature stable gratings were regenerated during an 800 °C annealing process from hydrogen-loaded Type I seed gratings. The wavelength shifts and separation of grating peaks were studied as functions of external hydrostatic pressure from 15 to...

متن کامل

Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers.

We report a microfluidic fiber-optic refractive index (RI) sensor based on an in-line Fabry-Perot (FP) interferometer, which is formed by a silica tube sandwiched by two microstructured fibers (MFs). The sensor reported here can be fabricated at low cost, possess a robust structure, and has microfluidic capability. The micro-sized holes in the MFs naturally function as microfluidic channels thr...

متن کامل

Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing.

We present fiber Bragg grating pressure sensors in air-hole microstructured fibers for high-temperature operation above 800 degrees C. An ultrafast laser was used to inscribe Type II grating in two-hole optical fibers. The fiber Bragg grating resonance wavelength shift and peak splits were studied as a function of external hydrostatic pressure from 15 psi to 2000 psi. The grating pressure senso...

متن کامل

Raman Spectra of a PMMA Microstructured Optical Fibre and Direct Measurement of Its Gain Coefficient

 A polymethylmethacrylate (PMMA) microstructured polymer optical fiber (mPOF) is fabricated and characterized. Using the cut-back technique the fiber loss is measured which is higher than the step-index silica fibers. Through a novel experimental scheme, the backward Stokes spectrum of the fabricated mPOF is recorded over a range exceeding 3000 cm‑1 during the cut-back method and compared ...

متن کامل

Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions

Microstructured optical fibers MOFs represent a promising platform technology for fully integrated photonic-plasmonic devices. In this paper, we experimentally investigate the properties of two MOF templates impregnated with silver nanoparticles via a high pressure chemical deposition technique. By comparing fiber templates with different air filling fractions, we have quantified the importance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 311 5767  شماره 

صفحات  -

تاریخ انتشار 2006